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Abstract

Peridynamics (PD) is a continuum theory that employs a nonlocal model to de-
scribe material properties. In this context, nonlocal means that continuum points
separated by a finite distance may exert force upon each other. A meshless method
results when PD is discretized with material behavior approximated as a collection
of interacting particles. This paper describes how PD can be implemented within a
molecular dynamics (MD) framework, and provides details of an efficient implemen-
tation. This adds a computational mechanics capability to an MD code, enabling
simulations at mesoscopic or even macroscopic length and time scales.
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1 Introduction

Molecular dynamics (MD) suffers from well-known computational limitations
in the length and time scales it can address, even on large parallel supercom-
puters. Numerous recent efforts attempt to coarse-grain MD and/or couple it
to meso- and macro-scale models to enable “multiscale” modeling of phenom-
ena such as crack growth, indentation, flow near surfaces, and heat transfer.
See [3,8,9,17] for examples and further references.

The purpose of this paper is to describe how peridynamics [12] (PD) can be
implemented within an MD framework. As we shall see, the force interac-
tions that result from discretizing PD are similar to traditional MD forces,
yet have additional characteristics that must be addressed for an efficient im-
plementation. Thus, with minor modifications, an MD code can perform PD
calculations. This provides a computational mechanics capability, enabling
simulations at mesoscopic or even macroscopic length and timescales, within
an MD framework.

PD is a continuum theory that has been used successfully to model high-
velocity impacts, fracture, and explosions, in a variety of materials, at length
and timescales up to meters and seconds, respectively. See [13] for details
of the PD theory, its implementation in modeling codes, and results from
simulations, beyond what is discussed in this paper.

The PD theory of continuum mechanics belongs to the class of microcon-
tinuum theories defined by generalizing the local force assumption to allow
force at a distance (see [1,2] for general discussions and references). In the
classical continuum context, “local force” means that only continuum points
in direct contact can exert a force on each other. The force arises from a
stress vector acting at a point on an oriented surface. In contrast, PD employs
an integral operator to sum forces avoiding the use of stress/strain fields in
its equation of motion. Instead, the material behavior in PD is specified by
non-local force interactions, assumed to be a function of the positions of the
continuum points. No assumption on the continuity, let alone differentiability
of the displacement field is made. This latter assumption on the displacement
field explains why PD can be employed for deformation that does not satisfy
the smoothness assumptions of classical continuum mechanics, e.g. fracture
and/or fragmentation.

When PD is discretized, a meshless method [13] results, where the material is
approximated as a collection of interacting continuum points. Meshless meth-
ods such as SPH (Smoothed Particle Hydrodynamics), EFG (Element Free
Galerkin), RKPM (Reproducing Kernel Particle Method), and XFEM (Ex-
tended Finite Element Method), have received considerable attention from the
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continuum mechanics community [7], and are typically formulated by discretiz-
ing the equations of classical continuum mechanics using a set of nodes. There-
fore a local force assumption is implicit in their derivation, and stress/strain
fields are assumed. In contrast, a discretized version of PD does not suffer
from the local force assumption because PD is a non-local continuum model.

The remainder of the paper is organized as follows. We first review PD in
section 2 and its discretization which yields inter-particle forces in section 3.
We have implemented PD in LAMMPS, Sandia National Laboratories’ parallel
molecular dynamics code [11]. Details of the implementation are discussed in
section 4. Finally, section 5 illustrates the style and scope of macroscopic
simulations such a modified MD code can then perform.

2 Peridynamics

We briefly review the salient details of peridynamics. The reader is referred to
[12–14] for further details. Let a body in some reference configuration occupy
a region B. For any x ∈ B the PD equation of motion is

ρü(x, t) =
∫
B
f(η, ξ)dV ′ + b(x, t), t ≥ 0 (1)

where u(x, t) is the displacement field with initial conditions u(x, 0) = u0(x),
u̇(x, 0) = u̇0(x). The vector function f(η, ξ) denotes the force density per unit
reference volume exerted on a point y = x+u(x, t) by the point y′ = x′ +u′,
where u′ = u(x′, t). The vectors η = u′−u, and ξ = x′−x denote the relative
displacement and relative position in the reference configuration, respectively.
Hence y′ − y = ξ + η, gives the current relative position between x and x′

in the deformed configuration. The vector b(x, t) is the loading force density,
and the mass density is denoted by ρ.

The material behavior is specified by f(η, ξ). For a microelastic material,
this function can be derived from a micropotential Φ. As an example, con-
sider a proportional microelastic material [13]. The potential (per unit volume
squared) is

Φ(η, ξ) =
1

2

c

‖ξ‖
(‖η + ξ‖ − ‖ξ‖)2 (2)

where c/ ‖ξ‖ > 0 is the stiffness per unit volume squared and ‖ξ‖ is the
equilibrium length of the spring. The gradient of (2) gives a pairwise force
function of

f(η, ξ) = ∇ηΦ(η, ξ) =
c

‖ξ‖
(‖η + ξ‖ − ‖ξ‖) η + ξ

‖η + ξ‖
. (3)
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A standard assumption is that for a given material, f(η, ξ) = 0 for all η
when ‖ξ‖ > δ for some δ > 0, the horizon. We denote the horizon of x by
δ(x). We remark that δ(x) is a constitutive parameter defined in the reference
configuration, and that f(η, δ) may not be a negligible force. We also denote
by H(x) the spherical neighborhood of x in B with radius δ(x).

The spatial discretization of PD divides the region B into nodes which together
define a mesh. A discrete approximation to the force density in (1) using (3)
is

∫
B
f(η, ξ)dV ′ =

∫
H(x)

f(η, ξ)dV ′ ≈
∑

x′∈H(x)

c

‖ξ‖
(‖η + ξ‖ − ‖ξ‖) V ′ η + ξ

‖η + ξ‖
,

(4)
where V ′ is the volume associated with the particle x′, and where we have
identified points x and x′ with particles in the mesh. Hence, the discretization
of peridynamics gives rise to an interacting set of particles approximating the
behavior of the material. The resulting semidiscrete equation of motion can
be combined with a velocity-Verlet time integration scheme for a fully discrete
approximation to the PD equations of motion (1). This correspondence allows
PD to be implemented within an MD framework because of the analogous
computational structure.

The force functions introduced in [12] (and discussed above) assumes a pair-
wise interaction. The recent paper [14] generalizes pairwise force interactions
to those depending upon the force state, or collective behavior, at y′ and y.
This extension of peridynamics allows a continuum generalization of multi-
body force interactions. We also remark that an MD notion of a cutoff can be
introduced so that if ‖η + ξ‖ exceeds a prescribed value, the force interaction
is set to zero. The cutoff is defined in the deformed configuration in contrast
to the material parameter δ(x) defined in the reference configuration.

3 Inter-particle Forces Used in Peridynamics

We now discuss the form of inter-particle forces that result from a discretiza-
tion of PD. As a concrete example, we derive forces and a particle equation
of motion for the prototype microelastic brittle (PMB) material model intro-
duced in [13]. A PMB material specializes the force interaction of (4) to allow
for a bond breaking mechanism. We also discuss short-range repulsive forces
and the calculation of particle volumes.
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3.1 Proportional Microelastic Brittle Materials

For a PMB material

f(η, ξ) = g(η, ξ)
η + ξ

‖η + ξ‖
, (5a)

g(η, ξ) =

cs(t,η, ξ)µ(η, ξ) ‖ξ‖ ≤ δ,

0 ‖ξ‖ > δ,
(5b)

depends upon the bond stretch

s(t,η, ξ) =
‖η + ξ‖ − ‖ξ‖

‖ξ‖
,

and a history-dependent scalar boolean function

µ(t,η, ξ) =



1 s(t′, η, ξ) < min {s0(t
′, η, ξ), s0(t

′, η′, ξ′)} , 0 ≤ t′ ≤ t,

s0(t,η, ξ) = s00 − αsmin(t,η, ξ),

smin(t) = minξ s(t,η, ξ),

η′ = u(x′′, t)− u(x′, t), ξ′ = x′′ − x′

0 otherwise

(6)

where s0(t,η, ξ) is a critical stretch and s00 and α are material-dependant
constants. µ is 1 for an unbroken bond and 0 otherwise. Although s0(t,η, ξ)
is expressed as a property of a particle, bond breaking must be a symmetric
operation for all particles sharing a bond. That is, particles x and x′ must
utilize the same test when deciding to break their common bond. This can be
done by any method that treats the particles symmetrically. In the definition
of µ above, we have chosen to take the minimum of the two s0 values for
particles x and x′ when determining if the bond between x and x′ should be
broken.

3.2 Short-Range Forces

In the preceding section, particles interact only through bond forces. A particle
with no bonds becomes a free non-interacting particle. To prevent subsequent
particle overlap, short-range repulsive forces are introduced. We add to the
force f in (1) the following force

fS(η, ξ) =
η + ξ

‖η + ξ‖
min{0, cS

δ
(‖η + ξ‖ − dS)}, (7a)

dS = min {0.9 ‖x− x′‖ , 1.35(rS + r′S)} , (7b)
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where rS is defined as the node radius. Given a discrete lattice of particles,
we choose rS to be half the lattice constant. Note that short-range forces are
only repulsive, never attractive.

3.3 The Discrete Equation of Motion

The region defining a peridynamic material is discretized into particles forming
a cubic lattice with lattice constant a, where each particle i is associated with
some volume Vi = a3. Recall that xi and yi denote the reference configuration
(initial position) and position at time t, respectively, of particle i. Further, for
any particle i, let

Fi = {j | ‖xj − xi‖ ≤ δ}, (8a)

FS
i = {j |

∥∥∥yj − yi

∥∥∥ ≤ dS}, (8b)

where dS is defined in (7b). The former denotes the family of particles within
a distance δ of particle i in the reference configuration, and the latter de-
notes the family of particles within a distance dS of particle i in the current
configuration.

Instead of (1), we discretize the equation of motion

ρÿ(x, t) =
∫
H(x)

f(η, ξ) dVx′ + b(x, t),

where we explicitly track and store at each timestep the positions and not the
displacements of the particles. We observe that ÿ(x, t) = ẍ+ ü(x, t) = ü(x, t),
so that this is equivalent to (1).

Using (5), (7)–(8) the semi-discrete peridynamic equation of motion can then
be written as

ρiÿ
n
i =

∑
j∈Fi

f(un
j − un

i ,xj − xi)Ṽj +
∑

j∈FS
i

fS(un
j − un

i ,xj − xi)Vj + bn
i , (9)

Ṽj = ν(xj − xi)Vj.

We introduce the function ν(xj − xi) as a scale factor on Vj for the following
reason. Some of the particles j to which particle i is bonded will be near the
boundary of H(xi) (the sphere of radius δ surrounding particle i). For these
interactions only a portion of Vj is inside the sphere and the bond strength
should be diminished as a result. The following linear dimensionless nodal
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volume scaling function accounts for this effect:

ν(x− x′) =


− 1

2rS
‖xj − xi‖+

(
δ

2rS
+ 1

2

)
δ − rS ≤ ‖xj − xi‖ ≤ δ

1 ‖xj − xi‖ ≤ δ − rS

0 otherwise

(10)

Note that if ‖xj − xi‖ = δ, ν = 0.5, and if ‖xj − xi‖ <= δ − rS, ν = 1.0.

4 Implementation of PD in LAMMPS

We now explain how equation (9) was implemented within the molecular dy-
namics code LAMMPS [11], an open-source, general-purpose, massively par-
allel MD simulator. LAMMPS provides a variety of interatomic potentials
for biological and polymer systems, solid-state materials, and other coarse-
grained models, but PD was the first continuum-level model added to the
code. LAMMPS is well-suited for implementing PD because it is designed
to allow new potentials, boundary conditions, and particle attributes to be
easily added without affecting the code’s operation when non-PD models are
simulated.

From an MD perspective, equation (9) can be rewritten succinctly as a poten-
tial for the energy of particle i in the following form

Ui =
∑

j∈FS
i

Φshort-range(uj − ui,xj − xi) +
∑
j∈Fi

Φbond(uj − ui,xj − xi), (11a)

where

Φshort-range(uj − ui,xj − xi) =

 cs

2δ

(∥∥∥yj − yi

∥∥∥− dS

)2 ∥∥∥yj − yi

∥∥∥ ≤ dS

0 otherwise

(11b)

Φbond(uj − ui,xj − xi) =

Φ(uj − ui,xj − xi) if bond unbroken

0 otherwise

(11c)

where Φ(uj − ui,xj − xi) is defined in equation (2).

The first term Φshort-range is the short-range potential (derived from equation
(7)) that prevents particles from overlapping. When particles are separated by
a distance greater than dS the interaction is zero. This term is effectively the
repulsive portion of a harmonic spring with equilibrium length dS. Note that
this is a much softer short-range repulsive potential than the 1/r12 repulsion
provided, for example, by a Lennard-Jones interaction [6].
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The second term Φbond is the cohesive potential for the material, summed
over all j ∈ Fi particles that are initially within a distance δ of particle i.
This is effectively a list of harmonic “bond” partners of particle i. Note that
the effective bond strength falls off as the inverse of the initial bond length
xj − xi, which can be seen from equation (2), and is also a function of the
scaled volume factor Ṽj defined in equation (9). The bond potential is set
to zero once it stretches beyond a critical length, as discussed for the PMB
material model in equations (5) and (6). An individual bond is active for all
time t until this occurs. If the bond breaks, it is never again active, even if the
two particles later come close together.

The critical stretch s0 of equation (6) is defined on a per-particle basis and is
computed each timestep for testing that particle’s bonds. To ensure symmetry
in bond breaking, if the stretch of the bond between particles i, j exceeds the
smaller of s0 for particle i or s0 for particle j, then the bond “breaks”. It
is deleted from the lists Fi and Fj of bond partners for both particles and
contributes no energy or force to the system for all subsequent timesteps.

As equation (11a) implies, the following parameters are input by the user to
define the PD potential for a specific material: ρ, c, s00, α, and δ. If different
particle types represent multiple materials in a more complex model, each of
these parameters can be defined for each pair of interacting particle types.
The functional forms of Φshort-range and Φbond are specific to the PMB material
model of section 3. However, PD models for other materials result in poten-
tial functions with similar characteristics: a short-range repulsive term and a
history-dependent cohesive term that can turn off as large deformations occur.

We now detail how equation (11a) was implemented in LAMMPS. First, a set
of consistent units suitable for macroscopic simulations was needed. LAMMPS
allows the user to choose units convenient for their particular simulations,
each of which is implemented as a handful of conversion factors. These are
used when, for example, kinetic energy (1/2mv2) is computed with velocities
in Angstroms/fmsec and the result should be in Kcal/mole (for an atomistic
simulation). For peridynamic simulations, an “SI” option was added where
energy = Joules, distance = meters, time = seconds, etc.

LAMMPS operates in parallel in a spatial-decomposition mode [11], where
each processor owns a sub-domain of the overall simulation box and the par-
ticles within the sub-domain. To compute pairwise or bond forces, a processor
communicates with its neighboring processors via distributed-memory mes-
sage passing (MPI) to acquire information about nearby “ghost” atoms owned
by those processors. To improve the efficiency of the computation of pairwise
forces, LAMMPS uses Verlet neighbor lists [18] that are recomputed every few
timesteps via binning particles on a regular grid and searching nearby bins to
find neighbors [4]. These are also the timesteps on which particles migrate to
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new processors as needed. For peridynamic simulations, Verlet neighbor lists
are used only when computing the family of short-range interacting particles,
FS

i .

Each PD particle stores 4 quantities in addition to the usual coordinates,
velocities, forces, etc. These are the critical stretch s0 from equation (6), the
particle volume V , the particle density ρ, and the initial position of the particle
x0. V is precomputed for each particle based on the initial problem geometry.

These 4 quantities migrate with particles as they move from processor to
processor. Additionally, the s0 value for each ghost particle is communicated
every timestep, since it is a dynamic quantity and the breakage criterion for
bond i, j depends on the s0 value of both particles. Similarly, the V value for
ghost particles is needed to scale the bond force between particles i, j. Since V
is a static quantity, it is only communicated on timesteps when reneighboring
is done.

The short-range term in equation (11a) is conceptually identical to standard
short-range pair potential computations within an MD code. In LAMMPS a
“half” neighbor list is used to efficiently find neighboring particles within a
distance dS on a given timestep. By “half” we mean that any interacting pair
i, j is only stored once in the list, either by particle i or by particle j. The
forces on particles i, j are computed for each pair in the list. At the end of
the force computation, forces on ghost particles are communicated back to the
owning processor.

Computation of the bond term in equation (11a) requires knowledge of which
bonds are already broken. Thus each particle stores a list of its bond partners,
denoted by Fi in (8a), and flags them as they break. For each partner, the
initial bond distance ‖xj − xi‖ is also stored, since it is used to calculate bond
strength. The bond family of particles Fi for each particle is computed only
once, on the first timestep of the simulation, based on the initial undeformed
state of the material. The union of Fi over all particles is effectively a “full”
neighbor list where the geometric neighbors of particle i within a cutoff dis-
tance δ are stored. By “full” we mean the interacting pair i, j is stored twice,
once by particle i and once by particle j.

With this information, the bond term in equation (11a) can be computed by
looping over the particles in Fi for each particle i. The bond is skipped if it
previously broke. If both particles i, j are owned by the processor, the bond
is also skipped if i > j, taking advantage of Newton’s 3rd law. For active
bonds, the bond is flagged as “broken” if the bond stretch s(t,η, ξ) exceeds
the current stretch criterion s0 for either particle i or j as defined in (6). While
bond forces are computed, a new stretch criterion s0 is also calculated, which
will be used to break bonds on the next timestep. Note that the min operation
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in (6) implies a loop over all bonds of particle i. As each bond is calculated,
the contribution to the new s0 of both the i and j particles is accumulated.
Thus at the end of the bond loop, each particle has a new s0, valid for the next
timestep. Since the bond partner list stores all bonds for each particle owned
by a processor, no extra communication is necessary to generate s0, e.g. due
to bonds with ghost atoms.

The bond partner list is another particle property that must migrate with par-
ticles as they move to new processors. This is done by packing and unpacking
the Fi set of bond neighbors and distances into a message-passing buffer each
time a particle migrates. During this operation, broken bonds are pruned from
the list, so that a minimal amount of information is communicated.

Once the short-range and bond terms of (11a) have been computed, a final
scaling by the volume Vi of each particle is applied. This results in an effective
force on each particle that can be used by a standard MD time integrator
(velocity Verlet in the case of LAMMPS) in the usual way to update particle
velocities and coordinates. For PD models we use a constant NVE integrator.
Thermostatting is not used, since temperature is an ill-defined quantity for
macroscopic PD particles. The “pressure” due to PD interactions can be com-
puted via the virial in the usual MD manner, except that the kinetic energy
term contributing to the pressure is ignored. Alternatively, a precise notion of
PD stress has been formulated in [5].

5 Numerical Experiments

To validate the new additions to LAMMPS against an existing PD code, EMU
[16], the experiment in section 6 of [13] was performed. Consider the impact
of a rigid sphere on a homogeneous block of brittle material. The sphere has
diameter 0.01 m and velocity of 100 m/s directed normal to the surface of
the target. The target material has density ρ = 2200 kg/m3. A PMB material
model is used with k = 14.9 GPa and critical bond stretch parameters given
by s00 = 0.0005 m and α = 0.25. The target was created as a 3d cubic lattice
of particles with lattice constant a = 0.0005 m and horizon distance δ =
0.0015m = 3a. To break symmetries, each particle was randomly perturbed
by a distance no more than 10% of the lattice constant. These perturbed
positions were used as the reference configuration for each particle. The target
is a cylinder of diameter 0.074 m and thickness 0.0025 m, and contains 103,110
particles. Each particle i has volume Vi = a3 = 1.25× 10−10m3.
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The stiffness constant c in the PMB material model was set to

c =
18k

πδ4
=

18(14.9× 109)

π(1.5× 10−3)4
≈ 1.6863× 1022. (12)

The timestep was set to 1.0× 10−9 seconds, using a CFL-like criterion [13].

The projectile used in the LAMMPS simulation was similar, but not identical
to the one used in [13]. The projectile was modeled as an indenter, exerting a
force

F (r) = −ks(r −R)2

on each particle, where ks is a specified force constant, r is the distance from
the particle to the center of the indenter, and R is the radius of the indenter.
The force is repulsive and F (r) = 0 for r > R. For our problem, the projectile
radius was R = 0.05 m and ks = 1.0× 1017 (SJP need units for ks) (compare
with (12) above).

A 200, 000 timestep simulation was performed. A sample cut view of the disk
(projectile not shown) appears in Figure 1, showing the debris cloud that
results from the impact. An image of the top monolayer of particles at the
end of the simulation is illustrated in Figure 2, showing fracture of the brittle
target. These results agree qualitatively with EMU, both in the size and shape
distributions of the resulting fragments.

Fig. 1. Cut view of target after impact by a projectile.

Finally, we compare the serial and parallel performance of PD within LAMMPS
to that of a standard Lennard-Jones (LJ) model. For the PD calculation, a
non-periodic cube of size 2.3 cm on a side was simulated, using roughly 100, 000
particles on a simple cubic lattice. The same PD material parameters described
in the previous section were used. For the LJ calculation, a 3d periodic cube
with the same number of particles was used to represent a solid. The LJ cutoff
was set to 3σ so that the number of neighbors per particle (≈ 150) roughly
matched the number of bond partners per particle in the PD system. Bench-
mark runs were performed on a large Linux cluster built consisting of 3.6
GHz Intel EM64T processors and an Infiniband communication network with
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Fig. 2. Top monolayer of brittle target showing fragmentation.

230 Mb/sec and 9 µsec bandwidth and latency performance for point-to-point
MPI message passing.

The timing results are presented in Table 1 for runs of 10,000 timsteps each, on
processor counts from 1 to 64. The results indicate the PD potential is about
four times more expensive to compute than a LJ potential. Similar parallel
scalability for both models was observed.

Table 1
CPU timings (in seconds) for 10, 000 timesteps of 100,000-particle peridynamics
(PD) and Lennard-Jones (LJ) systems.

Number of LJ LJ PD PD

Processors (sec) Speedup (sec) Speedup

1 4053.0 1.0 17302.6 1.0

2 2157.9 1.9 9028.4 1.9

4 1133.3 3.6 4673.6 3.7

8 587.6 6.9 2413.4 7.2

16 317.7 12.8 1327.9 13.0

32 172.5 23.5 714.6 24.2

64 94.0 43.1 380.2 45.5

12



6 Conclusions

Peridynamics is a continuum mechanics theory based on a non-local force
model. We have shown that the inter-particle forces that result from dis-
cretizing PD have a functional form analogous to interatomic potentials com-
monly used in molecular dynamics (MD). We have demonstrated that PD
can be implemented within an MD framework. Enhancing an MD code in
such a way allows users familiar with MD to effectively simulate contin-
uum mechanics. The PD extensions made to the LAMMPS molecular dy-
namics package are available for download from the LAMMPS WWW site
http:\\lammps.sandia.gov. For more details on using the code, see the user
guide [10].

Future work involves computing thermodynamic quantities such as tempera-
ture, computing the peridynamic stress [5], and the simulation of classical
elasticity [15]. The latter capability enables multiscale simulation because
both molecular dynamics and classical elasticity can be performed within
LAMMPS.
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[1] Zdeněk P. Bažant and Milan Jirásek. Nonlocal integral formulations of plasticity
and damage: Survey of progress. J. of Eng. Mech., 128:1119–1149, 2002.

[2] Youping Chen, James D. Lee, and Azim Eskandarian. Atomistic viewpoint of
the applicability of microcontinuum theories. Int. J. of Solids and Structures,
41:2085–2097, 2004.

[3] L. M. Dupuy, E. B. Tadmor, R. E. Miller, and R. Phillips. Finite-temperature
quasicontinuum: Molecular dynamics without all the atoms. Physical Review
Letters, 95(6):060202, 2005.

[4] R. W. Hockney, S. P. Goel, and J. W. Eastwood. Quiet high–resolution
computer models of a plasma. J. Comp. Phys., 14:148–158, 1974.

[5] R. B. Lehoucq and S. A. Silling. Force flux and the peridynamic stress tensor.
J. Mech. Phys. Solids, Article in Press, 2008.

[6] John E. Lennard-Jones. Cohesion. Proceedings of the Physical Society,
43(5):461–482, 1931.

[7] Shaofan Li and Wing Kam Liu. Meshfree Particle Methods. Springer-Verlag,
2004.

[8] B. Q. Luan, S. Hyun, J. F. Molinari, N. Bernstein, and Mark O. Robbins.
Multiscale modeling of two-dimensional contacts. Physical Review E
(Statistical, Nonlinear, and Soft Matter Physics), 74(4):046710, 2006.

13



[9] J. T. Padding and A. A. Louis. Hydrodynamic interactions and Brownian forces
in colloidal suspensions: Coarse-graining over time and length scales. Physical
Review E (Statistical, Nonlinear, and Soft Matter Physics), 74(3):031402, 2006.

[10] Michael L. Parks, Steven J. Plimpton, Richard B. Lehoucq, and Stewart A.
Silling. Peridynamics with LAMMPS: A user guide. Technical Report SAND
2008-1035, Sandia National Laboratories, January 2008.

[11] S. J. Plimtpon. Fast parallel algorithms for short-range molecular dynamics. J.
Comp. Phys., 117:1–19, 1995. Available at http://lammps.sandia.gov.

[12] S. A. Silling. Reformulation of elasticity theory for discontinuities and long-
range forces. J. Mech. Phys. Solids, 48:175–209, 2000.

[13] S. A. Silling and E. Askari. A meshfree method based on the peridynamic model
of solid mechanics. Comp. Struct., 83:1526–1535, 2005.

[14] S. A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic states
and constitutive modeling. J. Elasticity, 88:151–184, 2007.

[15] S. A. Silling and R. B. Lehoucq. Convergence of peridynamics to
classical elasticity theory. Technical Report SAND2007-7242, Sandia National
Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,
November 2007. Submitted to J. Elasticity.

[16] Stewart A. Silling. EMU webpage. http://www.sandia.gov/emu/emu.htm.

[17] Alejandro Strachan and Brad Lee Holian. Energy exchange between
mesoparticles and their internal degrees of freedom. Physical Review Letters,
94(1):014301, 2005.

[18] L. Verlet. Computer experiments on classical fluids: I. Thermodynamical
properties of Lennard–Jones molecules. Phys. Rev., 159:98–103, 1967.

14


